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1. Online decision-making

• facing a problem (environment, system, etc.): implement the best decision (control, action)

to meet some objective (min or max);

• uncertainty: unknown environment, subject to exogenous factors, limited models;

• online: the only information we have access to comes from the past, even the current

problem is not well characterized (predictive aspect);

• sequential nature of the problem: consecutive decisions;

• today: online (machine) learning approaches.
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Online decision process

In each round:

1 implement decision;

2 suffer losses & get new information;

3 compute next round decision.

Example: uncertain resource allocation in real-time.

• manage resources while learning their attributes.
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Applications

• telecommunication: channel access, network resource allocation;

• recommender systems: preference learning;

• finance: rebalanced portfolio;

• sensing: target localization or tracking;

• power systems: demand response, real-time pricing, economic dispatch/optimal power flow,

state estimation, etc.
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Motivation for online decision-making – static setting

First, our motivation is to learn the optimal fixed decision when all information is revealed

(hindsight). We call this context the static setting.

x0 x1 x2 x3 x4 x5 . . . xT

x∗

0 T

Figure 1: Sequence of decisions: static hindsight (top) and online (bottom)
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Motivation for online decision-making – dynamic setting

Then, we will move to the dynamic setting where one wants to implement the round optimal

decision at each round. This is of interest in many engineering contexts – but it is also a

harder problem.

x0 x1 x2 x3 x4 x5 . . . xT

x∗1 x∗2 x∗3 x∗4 x∗5 . . . x∗T0

Figure 2: Sequence of decisions: dynamic hindsight (top) and online (bottom)
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Overview

We will cover two important families of problems and their solution concepts:

1 Multi-armed bandit (MAB)
• stochastic
• adversarial
• Markovian

2 Online convex optimization (OCO)

Their main advantages is that their simplicity allows for a thorough performance analysis and

multiple extension tailored to the problem at hand.
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Real-time online decision-making

We primarily focus on real-time, online decision-making. In other words, we want to design

computationally efficient (time, CPU, memory) algorithms.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9x10 . . . xT

0 T

Figure 3: Fast-timescale decision making

If real-time is not our objective: we still get readily-implementable, hardware-compatible

approaches.
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2. Preliminaries

Notation:

• Consider a discretized time horizon T ∈ N. We index rounds by t.

• We have access to n ∈ N resources.

• We can either pick 0 < m < n resources (binary decisions) or a combination of all resources

(continuous decision);

• Let xt ⊆ 2n or xt ∈ Rn be our decision variable at time t.

• The problem can also be subject to context-specific constraints X , e.g., m binary decision

at the time: card xt = m or on the probability simplex:
n∑
i=1

xt(i) = 1.
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Preliminaries – II

Regret:

• performance indicator, used to design our algorithm A;

• definition (static):

RegretA(T ) =
T∑
t=1

Loss(xt,A)︸ ︷︷ ︸
loss we incurred

− min
x∈X

T∑
t=1

Loss(x)︸ ︷︷ ︸
hindsight fixed minimum

• can be adapted to gain maximization instead of loss minimization.

• we wish to design A such that RegretA(T ) < O(T ), i.e., regret is sublinear.

• sublinear regret: Hannan-consistent and RegretA(T )/T → 0 as T grows meaning A

performs as well as comparator, on average.
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Preliminaries – III

• we will refer to this regret as the static regret;

• an interesting extension is the dynamic regret:

Regretdynamic
A (T ) =

T∑
t=1

Loss(xt,A)︸ ︷︷ ︸
loss we incurred

−
T∑
t=1

min
xt∈X

Loss(xt)︸ ︷︷ ︸
round minima

• at this time, we will need to be more humble in our performance analysis;

• let VT be the cumulative variation in optima, used to characterize the complexity of

dynamic problems.
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3. The multi-armed bandit problem

• from “American slang”:

one-armed bandit = slot machine;

• each arm leads to a reward;

• objective: maximize the player’s gain by

determining the best sequence of arms

(decisions) to play;

• unknown resources, only feedback is from

the played arm;

• canonical example of exploration vs.
exploitation problem.

Figure 4: Slot machines in Reno Airport, NV, USA.
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Multi-armed bandits (MAB)

The three main family of bandits as characterized by the arm’s reward process:

• stochastic bandits (S);

• adversarial bandits (A):

• Markovian bandits (M).

For each family, their exists an efficient, sublinear regret solution concepts. But that’s only the

tip of the iceberg, there are many more family of bandits, e.g., contextual [36] or

infinite-armed [1] bandits.
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Applications (MAB)

• channel access in cognitive radio network [13] (S);

• intelligent transport systems [48] (A);

• load curtailment [46, 47] (M) and [32] (S);

• curtailment with load fatigue [21] (S);

• curtailment of prosumers using [5] (S);

• learning load models [30] (A);

• vehicle-to-grid for load flattening [19] (S);

• setpoint tracking with flexible loads [37] (S);

• frequency regulation [45] (S);
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3.1. Stochastic MAB

Setting:

• single arm can be played (m = 1), and xt ∈ {1, 2, . . . , n};

• let Xi,t be arm’s i reward at time t;

• the reward Xi,t is distributed according to an unknown i.i.d. random variable;

• bounded reward: 0 ≤ Xi,t ≤ X, then normalized so that Xi,t ∈ [0, 1].

• no prior information is known about Xi,t;

• if xt = i, i.e., arm i is played, then we observe Xi,t and nothing more.
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MAB process

In each round t = 1, 2, . . . , T :

1 play arm xt ∈ {0, 1, 2, . . . , n};

2 obtain reward Xxt,t;

3 compute xt+1, the next arm to play given additional knowledge.

Our objective: design a policy xt+1 given only observations as we go.
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Regret for MAB

Regret: we make slight modification → pseudo-regret.

In MAB, the regret translates to:

RegretA(T ) = max
i=1,2,...,n

T∑
t=1

Xi,t −
T∑
t=1

Xxt,t

which is a random variable because the reward and potentially the policy xt are stochastic.

We rather opt for the expected regret defined as:

E [RegretA(T )] = E

[
max

i=1,2,...,n

T∑
t=1

Xi,t −
T∑
t=1

Xxt,t

]
.

Note. The E is taken w.r.t. the random reward and the random decision-making policy.
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Pseudo-regret for MAB

This is still a very strict performance indicator because the expectation is taken over max..

We swap the E and max and use a weaker definition of the regret, the pseudo-regret:

E [RegretA(T )] ≥ max
i=1,2,...,n

E

[
T∑
t=1

Xi,t −
T∑
t=1

Xxt,t

]

= max
i=1,2,...,n

T∑
t=1

µi − E

[
T∑
t=1

µxt,t

]

= Tµ∗ −
T∑
t=1

E [µxt,t]

= RegretA(T ),

where E [Xi,t] = µi because i.i.d. random variable and µ∗ = max
i=1,2,...,n

µi.

Now, how do we compute xt?
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Optimism in the face of uncertainty

• Policy #1: greedy, i.e., sample each arm once, then play the one with highest mean.
• no guarantee of sublinear regret, might be “stuck” on bad arm.

• Policy #2: ε-greedy, i.e., same but explore at random with probability ε [2];
• constant non-zero probability of exploration leads to linear regret
• if εt ∝ 1

td2 where 0 < d < min
x6=x∗

µ∗ − µx, sublinear regret but needs prior knowledge for d.

• Policy #3: upper confidence bound (UCB1) [2], i.e., be optimistic about the reward and
play the arm with the highest supposed reward. That also means don’t ignore arms that
poorly performed at some point.
• sublinear regret bound, with no further assumption.
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Upper confidence bound-1 (UCB1) algorithm

Let cti be the number of time arm i has been played after t rounds.

Initialization: play each arm once and let current sample mean µ̂i = Xi,1:n and cni = 1 ∀ i .

In each round t = 1, 2, . . . , T :

1 play arm with largest index, xt = arg maxi λi;

2 obtain reward Xxt,t;

3 update current sample mean µ̂xt and counter cti;

4 update indices: λi ← µ̂i︸︷︷︸
sample mean after t

+

√
ln t+ 1
cti

.︸ ︷︷ ︸
upper confidence ∝ 1/explored
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Optimism in the face of uncertainty – II

Our sample average of arm i’s is out of our confidence interval with a vanishing probability:

Pr
[
|µ̂i − µi| ≥

√
ln t
cti

]
= Pr

∣∣∣∣∣∣
cti∑
t=1

Xi,t − ctiµi

∣∣∣∣∣∣ ≥ cti
√

ln t
cti



≤ 2e
− 2
ct
i

(
cti

√
ln t
ct
i

)2

(Hoeffding)

= 2
t2
.

So let’s trust our sample mean µ̂i, i = 1, 2, . . . , n.
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Optimism in the face of uncertainty – III

More specifically, the upper confidence bound of arm i is bounded by the expected reward

with high probability:

Pr
[
µ̂i +

√
ln t
cti
≤ µi

]
= Pr

 cti∑
t=1

Xi,t − ctiµi ≤ −cti

√
ln t
cti



≤ e
− 2
ct
i

(
cti

√
ln t
ct
i

)2

(Hoeffding)

= 1
t2
.

The UCB is not misleading with high probability, let’s be optimistic and follow the most

promising resource so far.
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Regret analysis

Let:

• ∆min = mini 6=x∗ µ∗ − µi

• ∆max = maxi µ∗ − µi

Theorem 1. (UBC1 regret bound) The pseudo-regret of UCB1 is bounded above by:

Regret(T ) ≤ n∆max

(
4 lnT
∆2

min
+ 1 + π2

3

)
.

The pseudo-regret is at most O(lnT ) and is, therefore, sublinear.
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Proof?

1 The regret can be re-expressed as:

Regret(T ) = Tµ∗ −
T∑
t=1

E [µxt,t]

=
n∑
i=1

(µ∗ − µi)E
[
cTi
]

=
n∑
i=1

∆i E
[
cTi
]

where ∆i = µ∗ − µi ∀ i and we recall that cTi is the number of time arm i was played after

T rounds.

Then, we need to show that for i 6= x∗, E
[
cTi
]
grows sublinearly in T .
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Proof? – II

2 Selecting arm i 6= x∗ at t occurs when:

µ̂x∗ +

√
ln t
ctx∗
≤ µ̂i +

√
ln t
cti
.

This in turns occur if:
• sample mean of the optimal arm is below our lower confidence bound (underestimate):

µ̂x∗ ≤ µ∗ −
√

ln t
ct

x∗
(1)

• sample mean of arm i is above our upper confidence bound (overestimate):

µ̂i > µi +
√

ln t
ct

i

(2)
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Proof? – III

• If i 6= x∗ at t and (1) & (2) are false, then:

µ∗ < µi + 2

√
ln t
cti
. (3)

That is, the expected values are closed to each other and under insufficient sampling seem

indistinguishable given our current upper and lower confidence bounds.

In fact, we have:

(1) and (2) are false =⇒ (3) is true,

and the contrapositive

(3) is false =⇒ (1) or (2) is true.
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Proof? – IV

Assuming (3) holds, we get:

µ∗ ≤ µi + 2

√
ln t
cti
⇐⇒ cti ≤

4 ln t
(µ∗ − µi)2

Hence, if cti >
⌈

4 ln t
∆2
i

⌉
, then inequalities (1) or (2) must be true.
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Proof? – V

3 Back to upper bounding E
[
cTi
]
for i 6= x∗.

E
[
cTi
]

= E

[
T∑
t=1

pick arm i at t
]

= E

[
T∑
t=1

Ii=arg maxλi at t

]

≤
⌈

4 lnT
∆2
i

⌉
+ E


T∑

t=
⌈

4 lnT
∆2
i

⌉
+1

Ii=arg maxλi at t ∩ (3) is false



≤ 4 lnT
∆2
i

+ 1 + E


T∑

t=
⌈

4 lnT
∆2
i

⌉
+1

I(1) is true ∪ (2) is true


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Proof? – VI

E
[
cTi
]
≤ 4 lnT

∆2
i

+ 1 +
T∑

t=
⌈

4 lnT
∆2
i

⌉
+1

Pr [(1) is true ∪ (2) is true]

≤ 4 lnT
∆2
i

+ 1 +
T∑

t=
⌈

4 lnT
∆2
i

⌉
+1

Pr [(1) is true] + Pr [(2) is true] (union bound)

≤ 4 lnT
∆2
i

+ 1 +
+∞∑
t=1

2
t2

= 4 lnT
∆2
i

+ 1 + π2

3 ,

and we have our bound the the number of time a non-optimal arm is picked.
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Proof? – VII

4 Altogether. We finally obtain

Regret(T ) =
n∑
i=1

∆i E
[
cTi
]

≤
n∑
i=1

∆i

(
4 lnT

∆2
i

+ 1 + π2

3

)
(previous result)

≤
n∑
i=1

∆max

(
4 lnT
∆2

min
+ 1 + π2

3

)
≤ n∆max

(
4 lnT
∆2

min
+ 1 + π2

3

)
which completes the proof.

Online Decision-Making 3-31/74



3.2. Adversarial MAB

Setting:

• single arm can be played (m = 1), and xt ∈ {1, 2, . . . , n};

• historically, in terms of losses instead of reward;

• let `i,t be arm’s i loss at time t;

• the loss is set by an adversary (nature/environment/system) when the decision is taken;

• bounded reward: 0 ≤ `i,t ≤ X, then normalized so that `i,t ∈ [0, 1].

• no prior information is known about `i,t;

• if xt = i, i.e., arm i is played, then we observe `i,t and nothing more.
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Adversarial MAB process

In each round t = 1, 2, . . . , T :

1 play arm xt ∈ {0, 1, 2, . . . , n} / simultaneously adversary sets `i,t∀ i;

2 suffer loss `xt,t;

3 compute xt+1, the next arm to play given additional knowledge.

Regret: the pseudo-regret in the loss-referential is

Regret(T ) =
T∑
t=1

E [`xt,t]− min
i=1,2,...,n

T∑
t=1

E [`i,t]

Note. The E is taken w.r.t. the decision maker and adversary random policy. To be continued.

How do we compute xt to play against an (non-oblivious) adversary?
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Randomized decision policy

• Policy #1: deterministic.
• linear regret, adversary can constructed a strategy against us.
• need a randomized policy.

• Policy #2: exponential weights for exploration and exploitation (Exp3) [3], i.e., randomly
select an arm i according to a probability mass function (pmf) computed by the
exponential weighting approach.
• sublinear regret bound;
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Exponential weights for exploration and exploitation (Exp3) algorithm

Let p =
(
p1 p2 . . . pn

)>
the vector of arm probabilities.

Initialization: pi = 1/n ∀ i.

In each round t = 1, 2, . . . , T :

1 play arm randomly xt according the distribution p

2 suffer loss `xt,t;

3 update estimated cumulative loss of arm xt: L̂xt ← L̂xt + `xt,t
pxt,t

4 update probability distribution ∀ i:

pi ←
e−ηtL̂i∑n
i=1 e−ηtL̂i
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Regret analysis

Theorem 2. (Exp3 regret bound) Let ηt =
√

lnn
tn . Then, the pseudo-regret of

Exp3 is upper bounded by:

Regret(T ) ≤ 2
√
Tn lnn.

The pseudo-regret is at most O(
√
T ) and is, therefore, sublinear.

• looser regret bound, but arguably harder setting (less constrained setting);

• interested readers are referred to [3, 6] for the proof.
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3.3. Markovian MAB

Setting:

• single arm can be played (m = 1), and xt ∈ {1, 2, . . . , n};

• consider the state of the arm i at time t: si,t ∈ S, where S is the state space.

• the process is Markovian;

• if arm selected, the state evolves according to Pr[st+1,xt | st,xt ], otherwise stay unchanged.

• back to reward, and we consider a discount factor γ;

• let ri ≤ ri(si,t) ≤ ri be arm’s i bounded reward at time t, can be negative (e.g., overused);

• transition probability Pr & reward function ri are known prior to decision process;

• states si,t are all observed at t.
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Markovian MAB process

In each round t = 1, 2, . . .:

1 play arm xt ∈ {0, 1, 2, . . . , n};

2 observe new state sxt,t

3 receive reward rxt(sxt,t);

4 compute xt+1 given the new state.

• we have more information and we can performed optimally in the expected sense;
• problem translates to the following program:

V (s0) = max
x1,x2,x3,...

E

[+∞∑
t=1

γtrxt(sxt,t)

∣∣∣∣∣ s0

]
.
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Index policy

• Policy #1: solve the dynamic program via Bellman equation.
• curse of dimensionality, problem dimension’s exponential in n, computationally intractable.

• Policy #2: Gittins index [14], i.e., select the arm i possessing the largest index νi (si,t).
• optimal policy for the m = 1 case;
• n indices to compute, each independent of other arms;
• based on optimal stopping problems (i.e., when to stop using an arm).
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Gittins index algorithm

In each round t = 1, 2, . . .:

1 play the arm xt with the largest index νi (si,t−1)

2 observe new state sxt,t

3 obtain reward rxt(sxt,t);

4 update Gittins index:

νxt = sup
T>0

E
[∑T

τ=0 γ
τrxτ (sxτ ,τ )

∣∣∣ sxτ ,0 = sxt,t

]
E
[∑T

τ=0 γ
τ
∣∣∣ sxτ ,0 = sxt,t

]
• no regret analysis – optimal decisions;
• multiple play at each round, m > 1 (suboptimal policy).
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Extension: restless MAB

An interesting extension is the restless MAB [49] in which:

1 multiple play at each round (m > 1) and the decision xt ∈ 2n, where card xt = m;

2 all states evolves ∼ Pr;

3 reward also obtained from unselected arms, new definition: ri (si,t, Ii∈xt);

Whittle index: suboptimal heuristic to solve this problem, pick m largest indices defined as

νi(si,t) = inf
λ
{λ | ri (si,t, Ii∈xt) = ri (si,t, Ii/∈xt) + λIi/∈xt} .

Interpretation: subsidiary λ such that is it equally good to play or not arm i.
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3.4. Example: Stochastic-MAB for load curtailment [32]

• demand response: aggregator wishes to curtail load power

consumption to assist the system operator, e.g.,

peak-shaving or frequency regulation;

• at each time step, mt loads must be curtailed;

• consider a set of n unknown, uncertain loads (→ arms);

• the potential for power reduction of loads is characterized

by a i.i.d. bounded random variables.

(a) Load aggregation Source: Pecan Street

(b) Heat pump Source: iStockPhoto

Figure 5: DR of flexible loads
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MAB with stochastic plays

Theorem 3. (UBC-SP regret bound) Let mt ∼ wide-sense stochastic process. Then
pseudo-regret of UCB1 where the mt largest indices λi are selected is bounded above by:

Regret(T ) ≤ n∆max

(
6
(
σ2
κ + κ2) lnT

∆2
min

+ 1 + κπ2

3

)
.

where κ and σ2
κ are the mean and variance of mt.

In this case, the pseudo-regret has been modified to account for multiple plays:

Regret(T ) = E

 T∑
t=1

∑
i∈x∗

t

µi −
∑
i∈xt

µi

 ,
where x∗t is the set collecting the mt largest µi, i.e., xt ∈ arg max

x∈2n

∑
i∈x
|µi| s.t. card x = mt.
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Numerical example

Consider a frequency regulation setting where power deficit is mitigated.

• n = 20 loads;

• curtailment Xi,t ∼ i.i.d. Uniform;

• Deficit signal st ∼ N>0(µACE, σ2
ACE);

• Load to deploy to mitigate imbalance mt:

min number of loads that summed are ≥ st

(using d-moving average of Xi,t);

• T = 105, i.e., 112 hours for 4 second

regulation time steps;

• Naive = Policy #1.
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Figure 6: Experimental pseudo-regret
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Conclusion: multi-armed bandit

• low information, sequential decision-making framework;

• setting & solution concepts for the three main types of bandits:

1 stochastic;

2 adversarial;

3 Markovian (bonus, restless).

• simple assumption means that it can be extended to many problems;

• MAB with stochastic plays for load curtailment in power systems.
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4. The online convex optimization problem

• optimization as a process [16];

• objective: iteratively minimize objective

function (≈ learn & adapt strategy);

• design very computationally efficient

decision rules;

• we will be looking two types of algorithm
and theirs respective regret analysis:

1 static

2 dynamic

• rich performance analysis.
Figure 7: Online gradient descent Source: [16]
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Applications

1 Static:
• spam filtering [16];
• portfolio selection;
• recommendation systems via matrix completion;
• localization of fixed target or online regression of patrolling target;
• computer breach detection via online support vector machine [25];
• learning EV behaviour models [44];
• pricing for EV charging [39];
• economic dispatch [41, 4, 50];
• state estimation [24];
• optimal power flow [23].
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Applications – II

2 Dynamic:
• moving target tracking [34];
• network resource allocation [10];
• internet of things [9];
• flexible/controllable and nominal load disaggregation in distribution feeder [26];
• real-time pricing in power systems [22];
• demand response for frequency regulation [31];
• multi-energy building management [35];
• economic dispatch [8].
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Online convex optimization (OCO)

Setting: in each round t = 1, 2, . . . , T , the decision maker solves:

min
xt

ft(xt)

s.t. xt ∈ X

• where xt: decision at t, X ⊆ Rn: compact & convex decision set;

• ft : Rn 7→ R convex, (sub)differentiable, but only observed after the round;

• B-bounded function: |ft(x)| < B and is G-bounded gradient: |∇ft(x)| < G ∀t;

• distribution of the sequence of ft: stochastic, adversarial;

• (computational resources are limited)
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4.1. OCO process

In each round t = 1, 2, . . . , T :

1 implement decision xt;

2 suffer the loss ft (xt) and observe all online parameters of ft;

3 compute next decision: xt+1 = UpdateRule(ft,xt).

Objective: design an efficient update rule which leads to a bounded regret.
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Regret

Regret: we adapt the regret to the OCO setting and obtain

RegretT =
T∑
t=1

ft(xt)︸ ︷︷ ︸
our decisions

−
T∑
t=1

ft(x?t )︸ ︷︷ ︸
comparators

.

1 static regret: x?t = x? ∀ t → best single decision

x? ∈ arg min
x∈X

T∑
t=1

ft(x)
• similar to MAB;
• application online: linear regression, localization/state estimation, portfolio rebalancing, etc.
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Regret – II

2 dynamic regret: x?t → round optimum

x?t ∈ arg min
x∈X

ft(xt)

• condition on {x?t }
T
t=1 via the cumulative variation VT ;

• measure how dynamic is the problem;

• VT =
∑T
t=1
∥∥x?t+1 − x?t

∥∥ ;

• we actually used a similar notion in MAB with stochastic plays;

• application online: moving-target localization, signal tracking, resource allocation, etc.
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Regret – III

x0 x1 x2 x3 x4 x5 . . . xT

x∗

0 T

(a) Static regret

x0 x1 x2 x3 x4 x5 . . . xT

x∗1 x∗2 x∗3 x∗4 x∗5 . . . x∗T0

(b) Dynamic regret

Figure 8: Notions of regret
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Step-by-step optimization

• next decision: xt+1 is computed using an update rule;

• idea: we use single iteration from a standard constrained convex optimization algorithm;

• simple & efficient, then establish performance guarantee;

• e.g., projected gradient descent [51].
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Online gradient descent (OGD)

In each round t = 1, 2, . . . , T :

1 implement decision xt;

2 suffer the loss ft (xt) and observe all online parameters of ft;

3 compute next decision:

xt+1 = projX (xt − ηt∇ft (xt))

where

projX (y) = arg min
x∈X

‖y− x‖ .

and ηt > 0 is a judiciously chosen descent step size.
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Regret analysis

We recall our assumptions:

• |ft(x)| < B ∀ x ∈ X ,∀ t (bounded loss)

• X is compact: ‖x‖ < X ∀ x ∈ X ,∀ t (bounded decision)

• ‖∇ft(x)‖ < G ∀ x ∈ X ,∀ t (bounded gradient)

Theorem 4. (OGD static regret bound) Let ηt = X
G
√
t

with 1
η0

= 0, then OGD’s
static regret is bounded by:

Regretstatic(T ) ≤ 3GX
√
T

The static regret is O(
√
T ) and, thus, sublinear.
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Proof?

1 Convexity of ft implies that:

ft(xt)− ft(x∗) ≤ ∇ft (xt)> (xt − x∗)

2 Upper bound on the gradient term: let’s consider the update to which we substract to

optimum:

xt+1 − x∗ = projX (xt − ηt∇ft (xt))− x∗.

Taking the 2−norm on both sides yields:

‖xt+1 − x∗‖22 ≤ ‖xt − ηt∇ft (xt)− x∗‖22

⇐⇒ ∇ft (xt)> (xt − x∗) ≤ 1
2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+ ηt

2 ‖∇ft (xt)‖22 .
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Proof? – II

3 Combining steps 1 & 2, and the regret definition:

Regret(T ) ≤
T∑
t=1
∇ft (xt)> (xt − x∗)

≤
T∑
t=1

1
2ηt

(
‖xt − x∗‖22 − ‖xt+1 − x∗‖22

)
+ ηt

2 ‖∇ft (xt)‖22

4 Rearranging the terms in the first parenthesis (and recalling that 1
η0

= 0):

Regret(T ) ≤ − 1
2ηT+1

‖xT+1 − x∗‖22 +
T∑
t=1
‖xt − x∗‖22

(
1
ηt
− 1
ηt−1

)
+ ηt

2 ‖∇ft (xt)‖22
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Proof? – III

5 By assumption, we have: ‖x‖2 ≤ X and ‖∇ft (xt)‖2 ≤ G

Regret(T ) ≤
T∑
t=1

2X2
(

1
ηt
− 1
ηt−1

)
+ ηtG

2

2 .

6 Telescoping sum:

Regret(T ) ≤ 2X2

ηT
+

T∑
t=1

ηtG
2

2 .
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Proof? – IV

7 Observing that:
1√
t
≤ 2√

t+
√
t− 1

= 2
(√

t−
√
t− 1

)
Then,

T∑
t=1

1√
t
≤

T∑
t=1

2
(√

t−
√
t− 1

)
= 2
√
T (telescoping sum)

8 Using ηt = X
G
√
t
then completes the proof:

Regretstatic(T ) ≤ 3XG
√
T .
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Regret analysis – II

We extend the previous result to the dynamic case.

Theorem 5. (OGD static regret bound) Let ηt = X
G
√
T

, then OGD’s regret is bounded
by:

Regretdynamic(T ) ≤ 5
2GX

√
T +G

√
TVT

The dynamic regret is O(
√
T (VT + 1)) and, thus, sublinear if VT < O(

√
T ).

• stricter condition on the problem via VT , but better guarantee for some applications.

Note: VT =
∑T
t=1
∥∥x?t+1 − x?t

∥∥, the cumulative variation.
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Proof

1 Same as static regret proof but with x∗ → x∗t (+ bounding the gradient term):

Regret(T ) ≤
T∑
t=1

1
2ηt

(
‖xt − x∗t ‖

2
2 − ‖xt+1 − x∗t ‖

2
2

)
+ ηtG

2

2

2 Noting that ηt = η: we expand the sum

Regret(T ) ≤
T∑
t=1

1
2η

(
‖xt‖22 + ‖x∗t ‖

2
2 − 2x>t x∗t − ‖xt+1‖22 − ‖x

∗
t ‖

2
2 + 2x>t+1x∗t

)
+ ηG2

2

=
T∑
t=1

1
2η

(
‖xt‖22 − ‖xt+1‖22

)
+ 1
η

(xt+1 − xt)> x∗t + ηG2

2
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Proof? – II

3 Re-expressing the second term in terms of of VT =
∑T
t=1
∥∥x∗t+1 − x∗t

∥∥
2:

Regret(T ) ≤ 1
η

x∗>T xT+1 −
1
η

x∗>1 x1 +
T∑
t=1

1
2η

(
‖xt‖22 − ‖xt+1‖22

)
+ 1
η

(
x∗t − x∗t+1

)> xt+1

+ ηG2

2

≤ 1
η

x∗>T xT+1 +
T∑
t=1

1
2η

(
‖xt‖22 − ‖xt+1‖22

)
+ ηG2

2 +
T∑
t=2

1
η

∥∥x∗t+1 − x∗t
∥∥

2 ‖xt+1‖2

≤ X2

η
+ 1
η
VT + TηG2

2 +
T∑
t=1

1
2η

(
‖xt‖22 − ‖xt+1‖22

)
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Proof? – III

3 Telescoping sum:

Regret(T ) ≤ X2

η
+ 1
η
VT + TηG2

2 + 1
2η

(
‖x1‖22 − ‖xT+1‖22

)
≤ X2

η
+ 1
η
VT + TηG2

2 + X2

2η .

4 Setting η = X
G
√
T

concludes the proof:

Regretdynamic(T ) ≤ 5
2GX

√
T +G

√
TVT .
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Extensions

There are many possible extension (beauty of a simple framework):

• strongly convex function (tighter regret bounds) [17, 40];

• feedback types: bandit OCO (only value of ft(xt) is available) [12, 31];

• distributed OCO: decisions are computed locally [42, 25, 27];

• time-varying constraints: X → Xt [10, 7];

• second-order update: based on the Newton’s step [34, 38];

• binary decisions: submodular function or using randomization [20, 18, 33, 28];

• predictive/rolling horizon [4, 29];

and many more.
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4.2. Example: Demand response (DR) of flexible loads [31]

• modulate power consumption (continuous) of

flexible loads in exchange of a reward.

• low infrastructure investment & renewable;

• applications: frequency regulation.

Figure 9: Residential load aggregation Source: CBC/Hayward

(a) Electric vehicles Source: City of Ventura

(b) Air conditioners/heat pumps Source: LG

(c) Water heater Source: Homedepot

Figure 10: Flexible loadsOnline Decision-Making 4-66/74



Demand response model

Online convex optimization for DR

min
xt∈[−1,1]n

(
st − p0,t − p>t xt

)2︸ ︷︷ ︸
Tracking error

+ R (xt)︸ ︷︷ ︸
Regularizer/side objective

• st: signal to track (unknown);

• xt ∈ [−1, 1]N : adjustment signal (decision/control);

• p0,t: nominal load consumption (uncertain);

• pt: load response to signal (uncertain);
I p>t xt: total power adjustment of flexible loads.
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Composite objective gradient descent

Composite objective gradient descent (COGD)

xt+1 = arg min
x∈[−1,1]

η∇ft(xt)>x + 1
2 ‖x− xt‖22 + ηR(x)

• Specially tailored to round-independent regularizers [11, 15, 31];

Theorem 6. Let η = δ√
T

with a > 0 and x0 = 0. Then, COGD’s regret is bounded by

Regretdynamic(T ) ≤
√
T

(
X

δ
+ G2δ

2 + 4X
δ
VT

)

• Regretdynamic(T ) < O(
√
T (VT + 1) similarly to OGD.
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Extension: feedback level

We consider four types of feedback from the loads:

1 full information;

2 bandit or limited: only ft(xt) is observed, e.g., power measurement at the feeder level;

3 partial bandit: some loads have full & some bandit, e.g., opt-out for privacy reasons;

4 Bernoulli: rounds are either full or bandit for every loads, reduce communication burden.
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Numerical example

• thermostatically controlled loads with

continuous decisions (e.g., HVAC);

• st = 15 sin(0.1t);

• N = 100 loads;

• subject to noise: pt = p + N[−1,1][0, 1
2 ];

• regularizer: sparsity & desired temperature;

• time horizon T = 600. 0 100 200 300 400 500 600
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Figure 11: Setpoint tracking loss comparison

(averaged over 100 simulations)
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Setpoint tracking
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(b) Bernoulli feedback setting

Figure 12: Setpoint tracking with flexible loads
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Conclusion: online convex optimization

• optimization problem decomposed as an optimization process;

• real-time decision-making: incorporate new data efficiently and mitigate uncertainty;

• next decision: update rule based single iteration of a convex optimization algorithm;

• performance guarantee: sublinear regret bound;

• large potential for extension tailored to the problem at hand.
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5. Conclusion

• we discussed online decision-making algorithm & their provable performance analysis;

• two main families of approaches:
• multi-armed bandit (stochastic, adversarial, and Markovian);
• online convex optimization.

• set the basis, now time to adapt frameworks to your problems;

• a natural next step: reinforcement learning. To be continued!
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Hoeffding inequalities
Hoeffding inequalities

Let Xi,t ∈ [0, 1] be bounded i.i.d. random variables with expected value µi. Then,

Hoeffding inequalities state that:

Pr
[
T∑
t=1

Xi,t − Tµi ≥ α

]
≤ e− 2α2

T

Pr
[
T∑
t=1

Xi,t − Tµi ≤ −α

]
≤ e− 2α2

T .

Thus, we also have:

Pr
[∣∣∣∣∣

T∑
t=1

Xi,t − Tµi

∣∣∣∣∣ ≥ α
]
≤ 2e− 2α2

T .

Back to UCB.
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OCO with time-varying constraints

OCO with time-varying constraints:

min
xt∈X

ft(xt)

subject to gt,j(xt) ≤ 0 for j = 1, 2, . . . J

ht,k(xt) = 0 for k = 1, 2, . . .K.

Back to OCO extensions.
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Lipschitz continuity

Let 0 < L < +∞. A function f : Rn 7→ R is L-Lipschitz continuous with respect to some

norm if for all x,y ∈ Rn:

‖f(x)− f(y)‖ ≤ L ‖x− y‖ .

Figure 13: Lipschitz continuity Source: Wikipedia
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Doubling trick

If the time horizon T is unknown, we can use the doubling trick [43] and use our algorithm

successively with a pseudo-T = 2m. This only increases the regret by a constant factor.

Let 0 ≤ a < 1. Consider a regret bound described by: Regret(T ) ≤ αT a + βVT + γT aVT .

Then, using T = 2m until the end of the process leads to:

Regret(T ) ≤
dlog2 Te∑
m=1

α (2m)a + βV2m + γ (2m)a V2m

≤ 2a+12a log2 T − 1
2a − 1 (α+ γVT ) + βVT

≤ 2a+1

2a − 1T
a (α+ γVT ) + βVT .

Note. The regret must not have a constant term.
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